

Uso de enfriadoras y bombas de calor en las redes de Calor y Frío

Joaquín Fernández Castaños

Responsable de prescripción zona centro | Carrier España, S.L. Teléfono: 91 520 93 82 y 91 520 93 00 | Móvil: 609 00 72 29

joaquin.fernandez@carrier.utc.com | www.carrier.es

Limitar el calentamiento global a 2°C desde ahora hasta 2100

CONTEXTO

ENERGY & CLIMATE PACKAGE

Convención Marco de las Naciones Unidas sobre el Cambio Climático para limitar el calentamiento global a 2°C hasta el año 2100

Paquete de medidas de la UE sobre el Clima y la Energía en el Horizonte Temporal del año 2030

UE ENFOQUE EN LA ENERGÍA

EDIFICIOS

Directiva de Eficiencia Energética de Edificios (EPBD)

L2A, RT2012, RITE, ENEV... Certificación de la Eficiencia Energética de Edificios

EQUIPOS

EcoDiseño (MEPS Minimum Efficiency Performance Standard) Etiquetado energético

ESTRATEGIA DE LA UE EN CALEFACCIÓN Y REFRIGERACIÓN

Objetivos de la energía utilizada para calefacción y refrigeración (50% en la UE):

- · Hacer la renovación más fácil
- Aumentar la cuota de renovables (incluyendo bombas de calor)
- Reutilización de residuos energéticos
- El Calor de distrito identificado como una oportunidad importante

DEMOSTRACIONES FINANCIADAS POR LA UE

Energy Local Storage Advanced system (ELSA)

"Su objetivo es permitir su integración en el sistema energético y su uso comercial."

Celsius

"Hay suficiente calor residual producido en la UE para calentar todo el stock de edificios de la UE. Los sistemas de calefacción y refrigeración de distrito tienen un papel importante que desempeñar para alcanzar los objetivos de eficiencia energética."

GrowSmarter

12 soluciones de smart cities en energía, infraestructura y transporte.

"Al permitir que los <u>operadores de calefacción de</u> <u>distrito compren el exceso de calor y lo vendan</u>, se necesitará menos energía para calentar los edificios y los costos de calefacción se pueden reducir."

ESTRATEGIA DE LA UE EN CALEFACCIÓN Y REFRIGERACIÓN

RENOVACIÓN

Mejoras en la Eficiencia Energética Potencialdades de Calefacción Solar, Geotermica y Bombas de Calor (eficiencias >3+)

EDIFICIOS INTELIGENTES

Conectados a la red Sistemas integrados Automatización y control de ocupación

RECUPERAR CALOR RESIDUAL

Existe suficiente calor residual para calentar todos los edificios de Europa Recuperar, mejorar, redistribuir y y reutilizar La conexión a las redes de calefacción urbana permite la redistribución

DISTRICT HEATING

Renovables, electricidad descarbonizada Almacenamiento térmico (tanques de agua caliente, subterráneos)

Fuente: EU communication "An EU Strategy on Heating & Cooling"

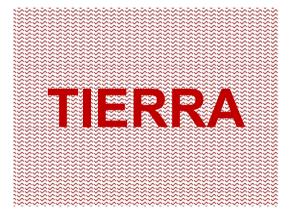
LOS 14 GRANDES RETOS PARA LA INGENIERÍA EN SIGLO XXI – NAE NATIONAL ACADEMY OF ENGINEERING (EEUU)

Good design and advanced materials can improve transportation and energy, water, and waste systems, and also create more sustainable urban environments.

"Un buen diseño y materiales avanzados pueden mejorar el transporte y la energía, el agua y los sistemas de depuración y tratamiento de desechos, y también crear entornos urbanos más sostenibles."

FUENTES DE CALOR QUE NOS RODEAN

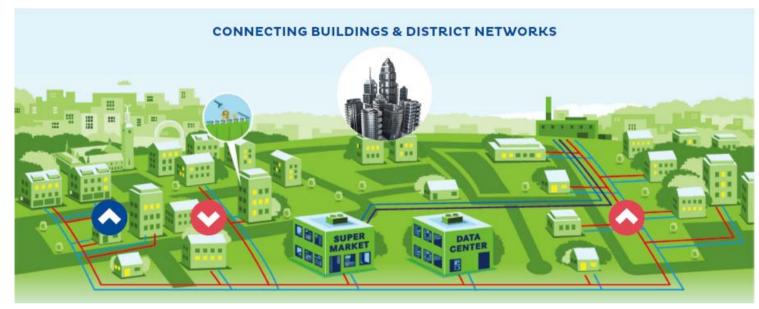
RENOVABLES


ACTIVIDAD HUMANA

AEROTERMIA

GEOTERMIA

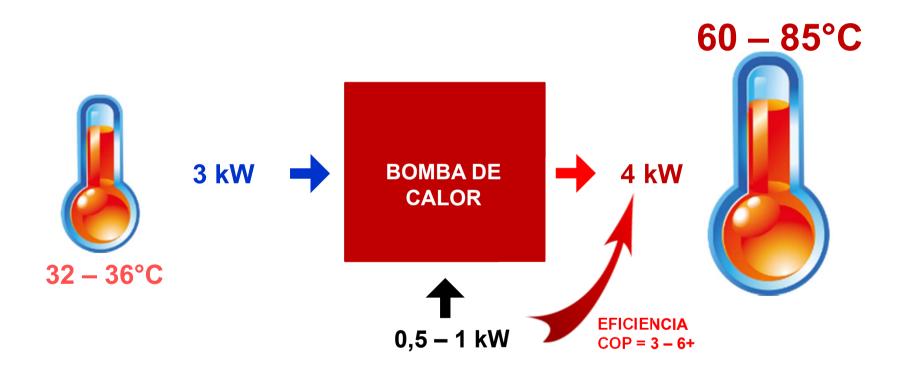
CALOR RESIDUAL


AIRE / AGUA / TIERRA

CALOR RECHAZADO DE EDIFICIOS, PROCESOS DE FABRICACIÓN, TRATAMIENTO DE RESIDUOS, ETC

LA CALIDAD DEL CALOR Y SU UTILIDAD VARÍA CON LA FUENTE

La UE ha identificado y calculado que se disipa suficiente calor para cubrir todas las necesidades de calefacción de la UE en edificios residenciales y terciarios.

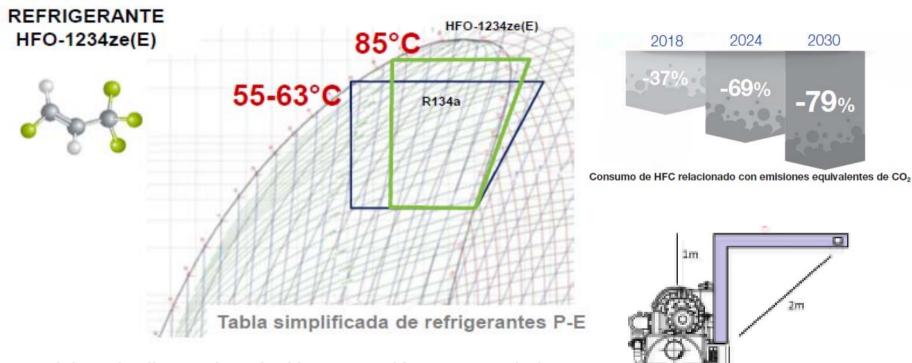


HEATING

CONCEPTO DE LA BOMBA DE CALOR

RECUPERA EL CALOR DE RESIDUAL Y LO MEJORA PARA HACERLO ÚTIL

RANGOS DE USO AMPLIADOS DE LAS BOMBA DE CALOR



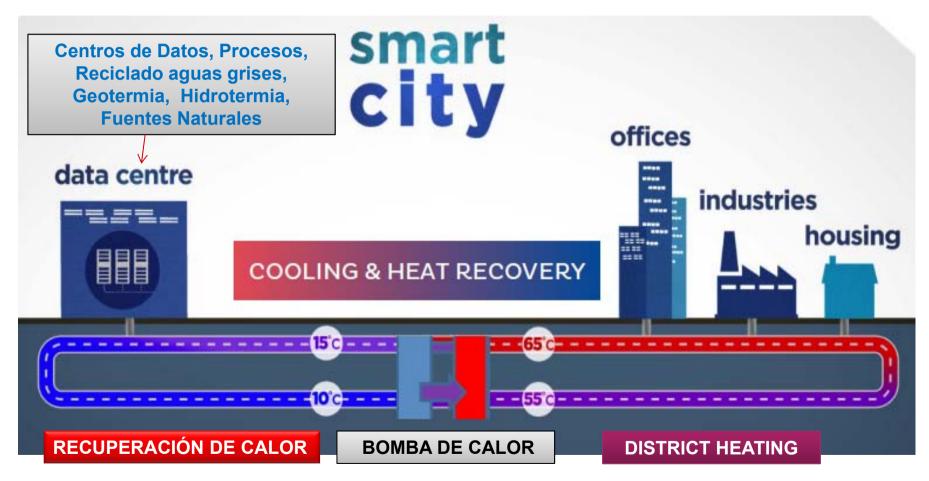
RANGOS PARA CUMPLIR TODOS LOS TIPOS DE TAMAÑO Y APLICACIÓN

ENFRIADORAS/BOMBAS DE CALOR DE COMPRESOR DE TORNILLO

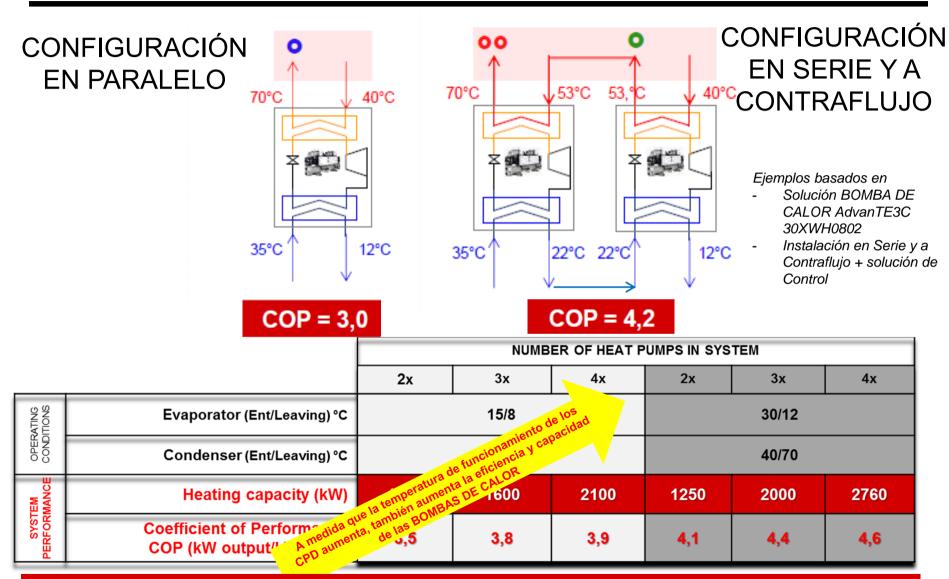
NUEVO REFRIGERANTE DE LA FAMILIA HIDRO-FLUORO-OLEFINAS CON PODER DE CALENTAMIENTO ATMOSFÉRICO PCA<1

Los requisitos de diseño, instalación, operación y mantenimiento de los sistemas con refrigerantes del grupo A2L están definidos en el Estándar ISO 5419 de 2015 y en la norma aprobada (todavía no publicada) prEN 378.

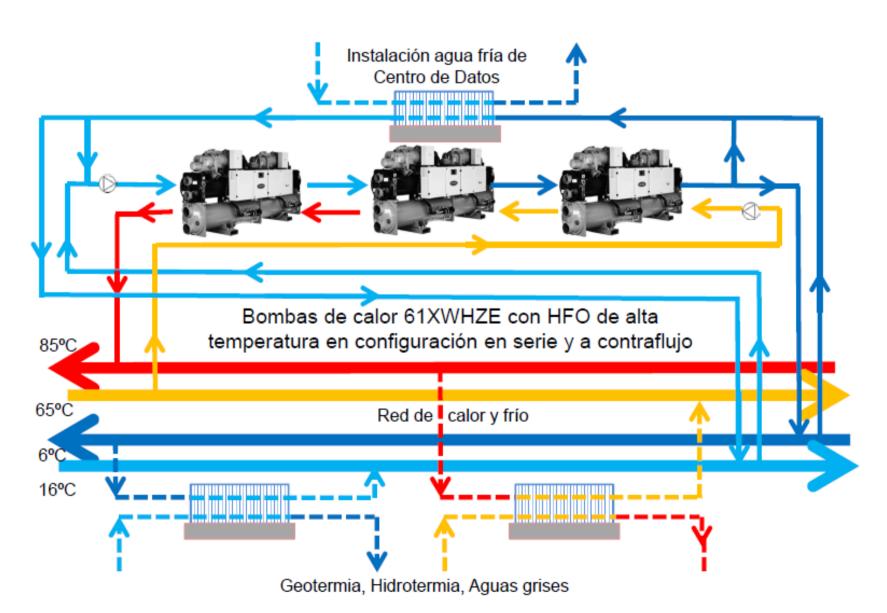
ENFRIADORAS / BOMBAS DE CALOR DE COMPRESOR CENTRIFUGO

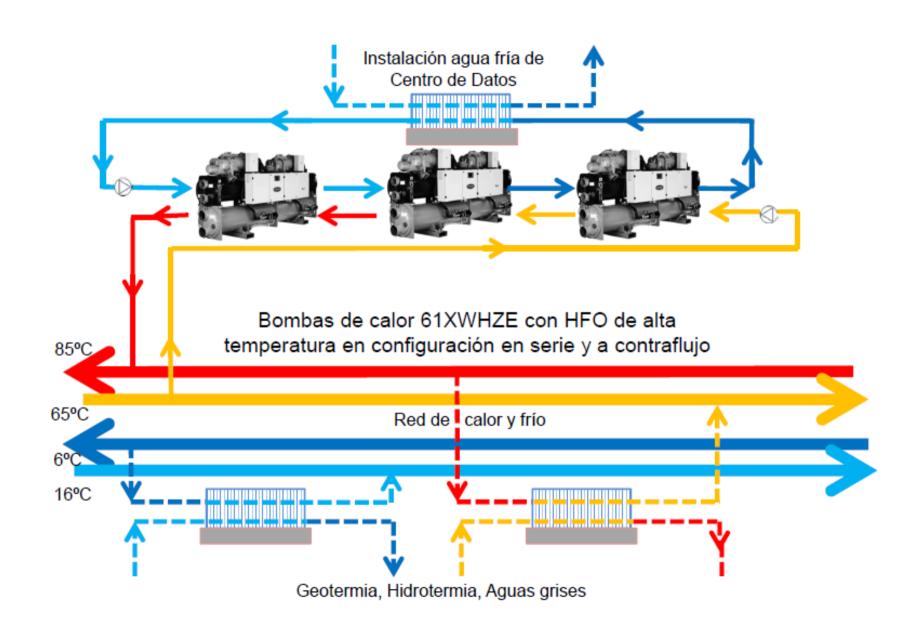


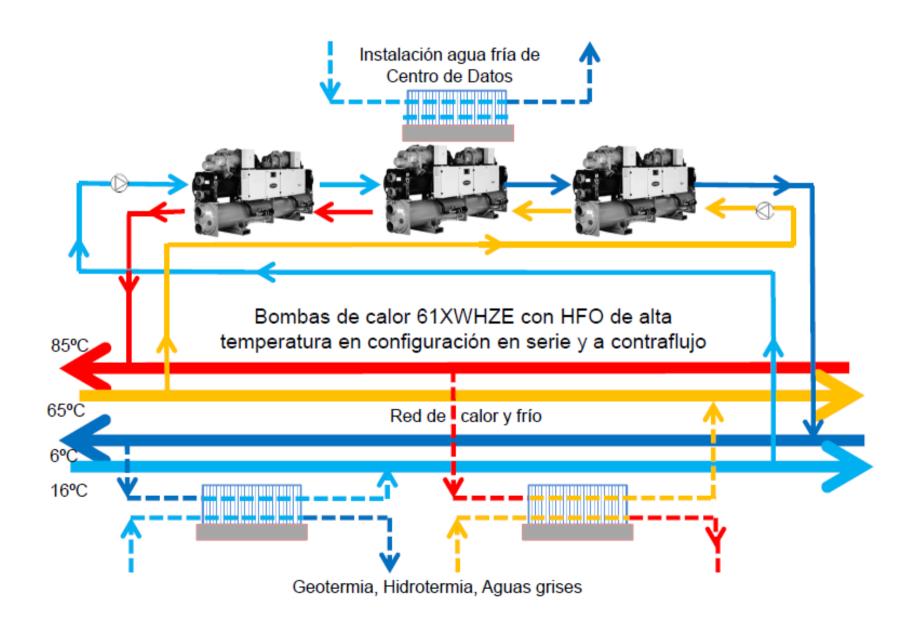
- Refrigerante HFO-1233zd con PCA 1 aprox. No tóxico. No inflamable
- ➤ Alto rendimiento: EER de 7 e IPLV de 11,8.
- Incorporan un compresor en dos etapas gestionado mediante IGV, variador de velocidad, cojinetes cerámicos lubricados por refrigerante, por lo que no necesitan lubricarse mediante aceite.
- > Re-arranque en 30s
- ➤ Nivel de armónicos (THDi) < 5% (filtro AFE que cumple el estándar IEEE 19).
- Evaporador multitubular por película, que permite la reducción de la carga de refrigerante.

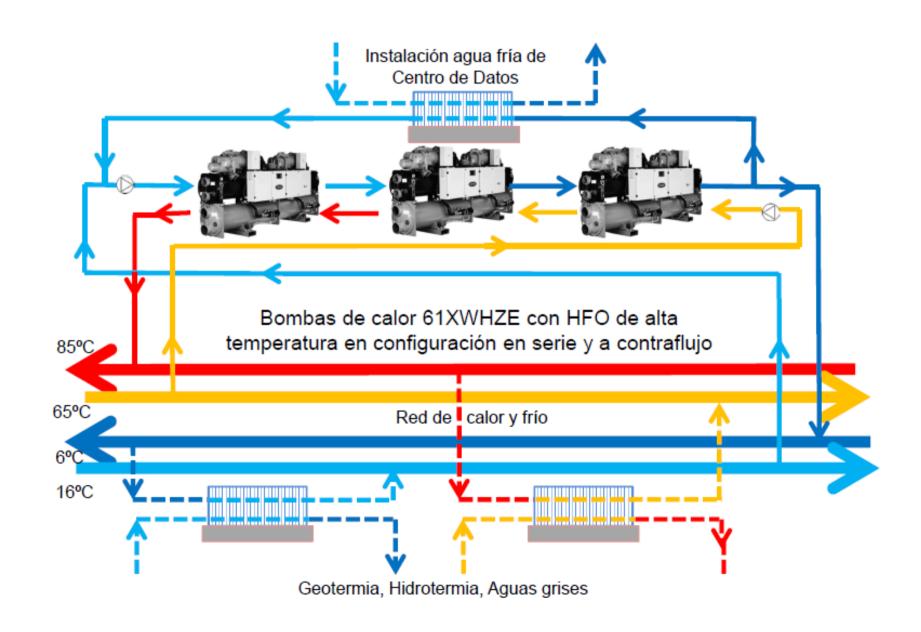


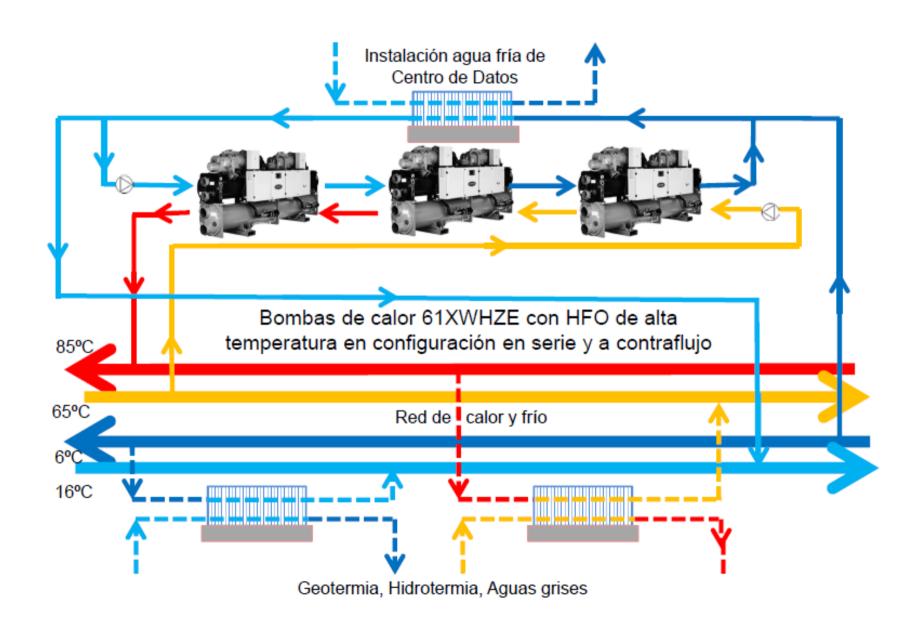
URBANIZACIÓN INTELIGENTE

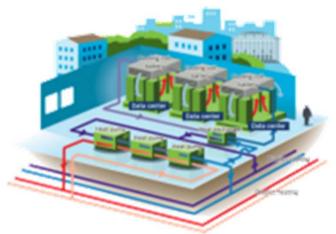

Los últimos diseños de bombas de calor permiten el funcionamiento con fuentes de calor de -5°C a 55°C y producir agua caliente de 65°C a 85°C


MULTIPLES UNIDADES EN SERIE Y A CONTRAFLUJO AUMENTAN LA EFICIENCIA DEL SISTEMA x1,6 (2 A 5 UNIDADES) Y PERMITEN TRABAJAR CON MAYOR DELTA T



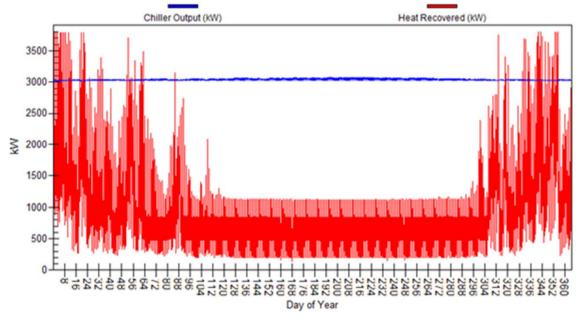

VENTA DE FRÍO Y CALOR





EJEMPLO DE APLICACIÓN

Sistemas comparados:


- a) Generación independiente de agua fría en enfriadoras y agua caliente en calderas.
- b) Generación de frío y calor bombas de calor de alta temperatura con HFO-1234ze con COP de 2,3-3,5

Zona urbana con 480 viviendas, 3 edificios de oficinas, un hotel, un gimnasio con piscina, un centro comercial, un centro de salud.

Total: 100.000 m2

- Demanda de calefacción+ACS: 4400 kW
- Demanda calor aplicación industrial: 200 kW constantes
- Producción de frío CPD: 3000 kW constantes

Hourly Simulation Results for Wednesday, January 1 (day 1) thru Wednesday, December 31 (day 365)

EJEMPLO DE APLICACIÓN

COMPARACION DE COSTES DE EXPLOTACIÓN

COMPARACION DE COSTES DE EXPLOTACION				
		GENERACION SEPARADA CON ENFRIADORAS + CALDERAS	GENERACION CON BOMBAS DE CALOR HFO- 1234ze	
	1 1 1 1 1	0/ 545 550	0/ 545 550	
Demanda de frío	kWhf	26.515.550	26.515.550	
Demanda de calor	kWhc	7.767.733	7.767.733	
Consumo eléctricidad para generación frío	kWhe	4.079.315	6.651.531	
Consumo térmico para generación calor	kWht	8.630.814	-	
Coste anual a 0,12 €/kWhe y 0,05 kWhc	€	921.059	798.184	
Emisiones anuales de CO2 ton CO	2/kWh	3.525	2.202	
Inversión enfriadoras	€	300.000	800.000	
Inversión calderas	€	150.000	-	
Inversión total	€	450.000	800.000	

Notas:

En la variante de generación separada, se suponen 3 enfriadoras de 1000 kW cada una con un EER estacional de 6,50 y 3 calderas de 1500 kW cada una con eficiencia 90%

13% de ahorro anual en costes energía 38% de ahorro anual en emisiones de CO2 Retorno de la inversión en menos de 4 años

COSTE TOTAL ACUMULADO en miles de €

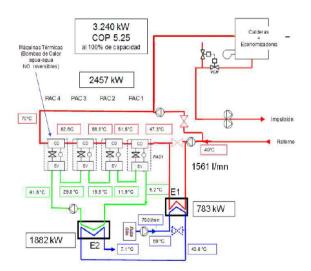
AÑO	ENFRIADORAS + CALDERAS	BOMBAS DE CALOR CON HFO
0	450	800
1	1.400	1.622
2	2.350	2.444
3	3.301	3.266
4	4.251	4.089
5	5.201	4.911
6	6.151	5.733
7	7.102	6.555
8	8.052	7.377
9	9.002	8.199
10	9.952	9.021
11	10.903	9.843
12	11.853	10.666
13	12.803	11.488
14	13.753	12.310
15	14.704	13.132

Notas:

Sobrecoste anual mantenimiento calderas: 1.500 € Incremento anual de costes de energía

y mantenimiento: 3%

EJEMPLOS DE INSNTALACIONES


Open District Heating™

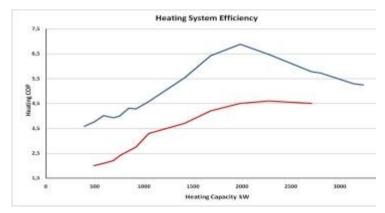
@Fortum

 Fortum Värme 'Open District Heating' en Estocolmo

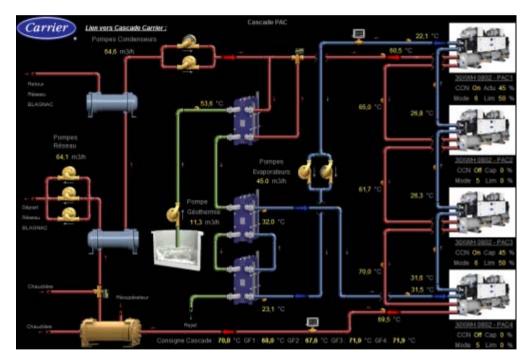
Profitable recovery with Open District Heating®

District Heating Tolouse (Francia)

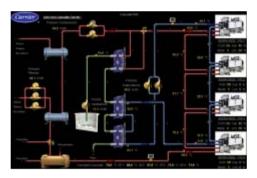
District
 heating/cooling
 Campus
 Universitario
 KTH Estocolmo

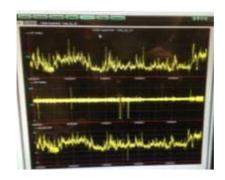

District Heating CADZIPLO Suiza

EJEMPLOS DE INSNTALACIONES



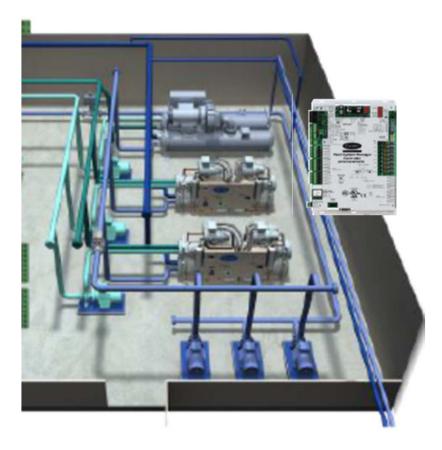
SISTEMA DE CALEFACCIÓN GEOTÉRMICA TOULOUSE, FRANCIA




Sistema de BOMBAS DE CALOR a alta temperatura con geotermia

EJEMPLOS DE INSNTALACIONES

Control de optimización de la planta



Solución de Control y optimización integral de la Planta de Frio/Calor, incluyendo enfriadoras, bombas, válvulas e integrando otros equipos

LA GESTIÓN DEL SISTEMA Y SU OPTIMIZACIÓN SON CLAVES PARA OBTENER LA EFICIENCIA DEL SISTEMA

CONCEPTO DE NEGOCIO

Fortum Värme 'Open District Heating'

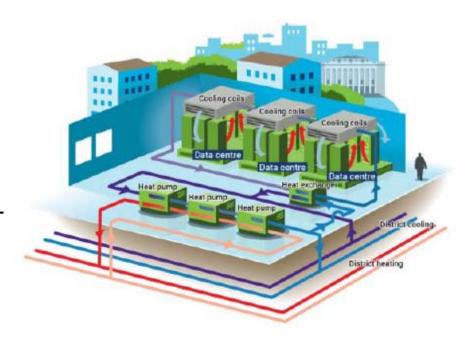
URBANIZACIÓN INTELIGENTE

Beneficios

Reducir el consumo de
combustibles fósiles
Reducir las emisiones de CO2
Conseguir ahorros significativos
en energía y costes
Contribuir a la reducción del

calentamiento global

CONCLUSIONES



Las enfriadoras y bombas de calor de tornillo y centrífugas con refrigerantes HFO

- ✓ ya son una solución comercialmente disponible
- ✓ superan los retos medioambientales impuestos por los reglamentos que limitan la disponibilidad de los HFC

- ✓ elevan los estándares de eficiencia energética
- ✓ amplían el rango de operación y delta T para su uso en múltiples aplicaciones
- ✓ siendo una alternativa fiable, rentable y segura.

Uso de enfriadoras y bombas de calor en las redes de Calor y Frío

Joaquín Fernández Castaños

Responsable de prescripción zona centro | Carrier España, S.L. Teléfono: 91 520 93 82 y 91 520 93 00 | Móvil: 609 00 72 29 joaquin.fernandez@carrier.utc.com | www.carrier.es

Muchas gracias